Coelioscopic surgery in children: the anesthesiologist's point of view
Plan

- Indications
- Physiologic consequences
- Additional risk: CO_2 embolism
- Medical contraindications
- Anesthetic management
- New crisis situations
Indications

- diagnostic: impalpable testis, contralateral hernia staging

- therapeutic:
 - appendicectomy, cholecystectomy, splenectomy, fundoplication, adhesiolysis
 - nephrectomy, pyeloplasty, adrenalectomy
 - pyloric stenosis, pull-through
 - ductus arteriosus, TOFistula ...
Coelioscopic vs open surgery

+ : less postoperative pain?
 better cosmetic result
 quicker functional recovery
 shorter hospital stay

- : increased cost: equipment, disposables
 unfamiliar physiologic consequences
 new anesthetic crisis situations
Physiologic consequences

model: laparoscopy

= insufflation into peritoneal cavity
 ⇝ increased intraabdominal pressure
 ⇝ absorption of exogenous CO$_2$
+ positioning of the child
 ⇝ retroperitoneal
 ⇝ intrathoracic
 ⇝ intravesical
Increased IAP

- respiratory mechanics
 1) cephalad shift of diaphragm
 - thoracic compliance
 - functional residual capacity
 - airway resistance
 2) peak inspiratory pressure
 - leak and Vt if uncuffed tube
 - P_{ETCO_2} & $PaCO_2 - P_{ETCO_2}$
Pig: insufflation up to 10 mmHg IAP with CO₂ or He

<table>
<thead>
<tr>
<th></th>
<th>CO₂ base</th>
<th>CO₂ ⇝ 10</th>
<th>He base</th>
<th>He ⇝ 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{paO}_2)</td>
<td>261 ± 49</td>
<td>189 ± 33</td>
<td>266 ± 30</td>
<td>212 ± 21</td>
</tr>
<tr>
<td>(\text{paCO}_2)</td>
<td>35.0 ± 1</td>
<td>57.9 ± 6</td>
<td>32.8 ± 1</td>
<td>43.5 ± 4</td>
</tr>
<tr>
<td>(P_{ET}\text{CO}_2)</td>
<td>29.0 ± 2</td>
<td>47.2 ± 5</td>
<td>27.8 ± 5</td>
<td>36.8 ± 3</td>
</tr>
<tr>
<td>RAP</td>
<td>3.0 ± 1.7</td>
<td>4.7 ± 1.5</td>
<td>2.7 ±1.5</td>
<td>6.7 ±1.5</td>
</tr>
<tr>
<td>pIVC</td>
<td>5.2 ± 1</td>
<td>12.5 ± 1</td>
<td>4.8 ± 1</td>
<td>13.0 ± 2</td>
</tr>
</tbody>
</table>
Increased IAP

- hemodynamics:
 - IAP < RAP (6 mmHg): \uparrow venous return
 \Rightarrow \uparrow CO
 - IAP > RAP (12 mmHg): \downarrow venous return
 \Rightarrow \downarrow CO
 - \uparrow systemic resistance (vasopressin, Nepi)
 - falsely elevated CVP
 \Rightarrow \uparrow hypovolemia!
Increased IAP

- **fluid balance**
 - less sensible & insensible losses?

- **splanchnic organs**
 - ↓ renal & splanchnic blood flow
 - ↓ urine output
 - ↓ or ↔ flow in portal vein
 - hepatic arterial buffer response?
Adult: portal vein flow vs IAP
Increased IAP

- **intracranial pressure**
 - ↑ cerebral blood volume & velocity
 - reduced venous drainage
 - reduced outflow from VP shunt

- check free flow of CSF

- monitoring of ICP
 - e.g., transcranial doppler

- postoperative clinical monitoring
Absorption of CO_2

1) varies with intraabdominal pressure:
 in the pig model (*Anesthesiology* 1994; 80: 129-36)
 * if < 10 mmHg: absorption of CO_2 \(\uparrow\) with insufflation pressure (recruitment)
 * if > 10 mmHg: absorption of CO_2 stable but increased deadspace ventilation (\(\Rightarrow\) PaCO_2)
Excretion of CO_2 vs IAP
paCO_2 vs IAP (piglet !)

![Graph showing paCO_2 vs Insufflation Pressure (mmHg)](image)

- CO_2
- He
Absorption of CO$_2$

2) effects of hypercarbia:

- **systemic**: ↑ sympathetic tone
 ↘ vasoconstriction, increased BP

- **regional**: vasodilation
 e.g., mesenteric vessels
 ↘ partial compensation of ↓ portal flow?
Absorption of CO_2

3) portal hypertension:
 \uparrow absorption of CO_2

4) a large amount of absorbed CO_2 is buffered in bone, muscles and tissues and eliminated through the lungs after the procedure

$\text{if poor respiratory function}$
Retroperitoneal insufflation

+ * no increase in $P_{ET}CO_2$ in children
 * no increase in airway pressures

- * ventilatory effects of position
 * increased risk of subcutaneous diffusion to pleura, mediastinum... ?
 * increased absorption of CO_2 ?
 (adults × children?)
Thoracoscopy

- usually: one-lung-ventilation
 - bronchial blocker

- if no OLV:
 - low insufflation pressure
 - pleural absorption of CO₂
Vesical insufflation

* to correct vesico-ureteral reflux

* still experimental

* absorption of CO_2 ?
* risk of embolism ?
Gasless laparoscopy
Child’s position

- **head-down:**
 - respiratory effects of increased IAP

- **head-up:**
 - hemodynamic effects of increased IAP

- **lateral decubitus:** V/Q mismatch

- **prone:** \(\downarrow\) CO
Child’s position
CO_2 embolisation

- probably frequent but no clinical signs

- piglet model of 0.6L/min iv CO_2:
 - mortality ↑ with insufflation pressure
 - 0% if 5 mmHg ⇒ 50% if 15 mmHg
CO₂ embolisation

- **« driving pressure »**
 \[\text{IAP} = \text{IA} \text{pressure} - \text{intravascular pressure} \]

 - **IAP > IV**: vessel collapse
 - **IAP < IV**: bleeding
 - **IAP ≅ IV**: bubbles can enter vessel
 - can remain trapped
 - ↠ embolism at exsufflation!!
Medical contraindications

- severe cardiac disease
 - physiologic effects on CO
 - paradoxical embolism through shunt
- severe pulmonary disease
 - increased CO_2 load
- reduced intracranial compliance
- liver disease ?
- history of spontaneous pneumothorax
- acute trauma: volemia, vessel damage
Preoperative evaluation

- same as for any pediatric patient
 - Cave: cholecystectomy & Hb SS
- Premedication:
 - according to age, emotional status, local habits ...
 - atropine for prevention of vasovagal reflex at insufflation?
Monitoring

- usual: ECG, NIBP, SpO\textsubscript{2}, P\textsubscript{ET}CO\textsubscript{2}
 airway pressures, compliance

- PaCO\textsubscript{2} - P\textsubscript{ET}CO\textsubscript{2}: varies during procedure
 can become negative!

- P\textsubscript{Tc}CO\textsubscript{2}?

- fragile patient: TEEchocardiography
Minimal invasive surgery can mean minimal access anesthesia!
Anesthetic management

- Cuffed ET tube
- Gastric emptying
- Venous access in upper limb
- Controlled ventilation
- IV fluids: ?
- Volume loading prior to insufflation?
- Slow and progressive tilting!
- Prevention of hypothermia
Anesthetic management

- Monitoring of insufflation pressure!
 - It should be kept as low as possible
- Additionnal intracavitary pressure if a gas coagulator is used
 e.g.: Argon beam = 4L/min!
- \(N_2O \) ? can support combustion if intestinal perforation
- Muscle relaxation?
Videohypnosis
Unusual crisis situations

- CO_2 or coagulator gas embolism
- bronchial intubation
- pneumothorax (« capnothorax »)
- subcutaneous emphysema
- hemorrhage
Differential diagnosis

- capnothorax
 \[\uparrow P_{ET}CO_2 \quad \uparrow \text{Paw} \quad \downarrow \text{SpO}_2 \]

- subcutaneous emphysema
 \[\uparrow P_{ET}CO_2 \quad \Leftrightarrow \text{Paw} \quad \Leftrightarrow \text{SpO}_2 \]

- endobronchial intubation
 \[\Leftrightarrow P_{ET}CO_2 \quad \uparrow \text{Paw} \quad \Leftrightarrow \text{SpO}_2 \]
Postoperative care

- **Pain**:
 - exsufflation of \(CO_2 \)
 - infiltration of trocar ports with LA
 - NSAID’s for shoulder pain
 - IV opioids or locoregional blockade

- **Vital signs**:
 - breathing: accumulated \(CO_2 \) load!
 - vital signs: delayed hemorrhage?
Conclusion

- Better understanding of physiologic consequences of CO_2 insufflation in infants and children
- Reliable non-invasive monitoring
- Better postoperative pain treatment